

- Control circuit EEx ia IIC
- Lead breakage (LB) monitoring and short-circuit (SC) monitoring
- Analogue output 0/4 mA ... 20 mA
- 1 serially switched output
- 1 error message output

230 V AC:

KHA6-FSU-Ex1.D
with LC indicator
Successor KFU8-UFC-Ex1.D

Function

The frequency current converter converts the input frequency into a set current. It is designed for the connection of a sensor per DIN EN 60947-5-6 (NAMUR), a nonrebounding contact or an electrical switch.
The input frequency (max. 5 kHz), in which 20 mA should flow across the output, is adjustable within the range of 0.001 ... 999 Hz . At higher frequencies, the input frequency should be divided across a pre-separator so that a max. frequency of 1 kHz lies at the microprocessor of the FSU. A load of 0 to 650 Ohm is approved at the analogue output. The present current value is indicated by units with LCdisplays in $31 / 2$ characters. The zero point (0 mA or 4 mA) can be adjusted through the "Zero point" potentiometer on the front panel. The zero point is preset at the factory. A readjustment is normally not necessary.
The response time of the analogue output is set using the S 5 thumbwheel switch with jumps in the input frequency. The fault signal output, the serial switch output, the power supply and the current output are galvanically isolated per DIN VDE 0160.
The power supply and the current output are galvanically isolated from each other in accordance with DIN VDE 0160.

Connection

Composition

Supply

Connection
Rated voltage
Power consumption
Input
Connection
Rated values
Open circuit voltage/Short-circuit current
Switching point/Switching hysteresis
Pulse/Pause ratio
Lead monitoring

Output

Connection
Output I
Output I and II
Signal level
Output II
Output III
Current range
Open loop voltage
Load
Transfer characteristics
Resolution
Deviation

Switching frequency
Electrical isolation
Input/Output
Input/power supply
Output/power supply
Output/Output

Directive conformity

Electromagnetic compatibility
Directive 89/336/EC

Standard conformity

Insulation coordination
Electrical isolation
Climatic conditions
Input

Ambient conditions

Ambient temperature
Mechanical specifications
Protection degree
Mass
Dimensions
Data for application in conjunction with hazardous areas
EC-Type Examination Certificate
Group, category, type of protection

Voltage	U_{0}
Current	I_{0}
Power	P_{0}

Type of protection [EEx ia]
Explosion group
External capacitance
External inductance
Type of protection [EEx ib]
Explosion group
External capacitance
External inductance
Outputs
Safety maximum voltage U_{m}
Electrical isolation
terminals 17, 18
85 ... 253 V AC , 45 ... 65 Hz
$\leq 4 \mathrm{~W}$
terminals 1+, 2+, 3-
acc. to ENnbsp;60947-5-6 (NAMUR, DIN 19234), see system description for electrical data
approx. 8 V DC / approx. 8 mA
$1,2 \ldots 2,1 \mathrm{~mA} /$ approx. $0,2 \mathrm{~mA}$
$\geq 0,1 \mathrm{~ms} / \geq 0,1 \mathrm{~ms}$
breakage $\mathrm{I}=0,05 \ldots 0,15 \mathrm{~mA}$, short-circuit 6,2 ... 7,4 mA
output I: terminals 7+, 8- ; output II: terminals 9+, 13- ; output III: terminals 14+, 15
fault signal ; electronic output, passive

1-signal: (L+) -2.5 V (100 mA, short-circuit proof)
0 -signal: blocked output (off-state current $\leq 10 \mu \mathrm{~A}$)
serial switching ; electronic output, passive
Analogue output
0 ... 20 mA or 4 ... 20 mA , max. 25 mA
$\leq 27 \mathrm{~V}$ DC
$\leq 650 \Omega$

12 Bit (equivalent to $6.1 \mu \mathrm{~A}$)
current-frequncy converter, analogue output: $\pm 0.6 \%$ of nominal output current $\pm 60 \mu \mathrm{~A}$ LC display (optional): $\pm 0.6 \%$ of nominal output current $\pm 100 \mu \mathrm{~A}$
$\leq 5 \mathrm{kHz}$
safe electrical isolation acc. to EN 50020
safe electrical isolation acc. to EN 50020
available
available
on request
acc. to DIN EN 50178
acc. to DIN EN 50178
acc. to DIN IEC 721
acc. to ENnbsp;60947-5-6 (NAMUR, DIN 19234), see system description for electrical data
$-25 \ldots 6{ }^{\circ} \mathrm{C}(248 \ldots 338 \mathrm{~K})$

IP20
approx. 260 g
$40 \times 100 \times 115 \mathrm{~mm}(1.6 \times 3.9 \times 4.5 \mathrm{in})$

PTB No. Ex-89.C. 2145 ; for additional certificates refer to the approval list
[EEx ia] IIC resp. [EEx ia] IIB
12,7 V
17,3 mA
55 mW

IIB IIC
$1,1 \mu \mathrm{~F} \quad 0,45 \mu \mathrm{~F}$
$5 \mathrm{mH} \quad 2 \mathrm{mH}$
IIB IIC
$5 \mu \mathrm{~F} \quad 1,2 \mu \mathrm{~F}$
$410 \mathrm{mH} \quad 114 \mathrm{mH}$

Input/Output
Input/power supply
Directive conformity
Directive 94/9 EC on request

Supplementary information

EC-Type Examination Certificate, Statement of Conformity, Declaration of Conformity and instructions have to be observed. For information see www.pepperl-fuchs.com.

Notes

Lead breakage and short circuit monitoring

The outputs are cut off, when the current in the control circuit is $\mathrm{J}<0,1 \mathrm{~mA}$ (in respect to lead breakage monitoring) or $\mathrm{J}>6 \mathrm{~mA}$ (in respect to short circuit monitoring), in this case the fault signal output is switched and indicates a fault through the illumination of LED 2 (red).

Adjustment instructions pre-scaler (S6)

The input frequency f_{E} can be reduced via a pre-scaler, as the microprocessor of the frequency current converter can process a maximum of 1 kHz (pulse to no-current ratio 1:1).

The adjustment is accomplished via a multi position switch.			
Switch in pos. I:	$1: 1(1 \mathrm{kHz})$	Æ	Separator ratio TV = 1
Switch in pos. II:	$2: 1(2 \mathrm{kHz})$	Æ	Separator ratio TV = 0.5
Switch in pos. III:	$10: 1(5 \mathrm{kHz})$	Æ	Separator ratio TV = 0.1
Switch in pos. IV:	$100: 1(5 \mathrm{kHz})$	Æ	Separator ratio TV = 0.01

By means of the solder bridge 1 can be determined, if the serially switched output is operated dependent or independent of the adjustment of the pre-scaler.

Solder bridge 1 in pos. I:	Serially switched output switches pre-scaler independent
Solder bridge 1 in Pos. II:	Serially switched output switches pre-scaler dependent
Delivery:	Solder bridge 1 in position II

Adjustment of the jumper 1

After removal of the cover and of the left-hand side part the jumper is visible on the printed circuit board.

Input frequency adjustment f_{E}

By means of the thumbwheel switch S1-S4 the frequency is adjustable, at which the maximum current of 20 mA is to flow. However the position of the pre-scaler should be considered.
Adjustment of the thumbwheel switches
Nominal frequency
$f_{n}=(S 1 \times 100+S 2 \times 10+S 3 \times 1) \times S 4 \times T V$
TV = separator ratio

example:	nominal frequency output current	$0 \mathrm{~Hz} \ldots 3.57 \mathrm{~Hz}$
	adjustment	$\mathrm{S} 1: 3 / \mathrm{S} 2: 5$
		$\mathrm{~S} 3: 7 / \mathrm{S} 4: 6$
		$\left(357 \times 10^{-2} \mathrm{~Hz}\right)$
		$\mathrm{S} 6: \mathrm{IV}(\mathrm{TV}=1)$

Switch S1	$(0-9) \times 100$
Switch S2	$(0-9) \times 10$
Switch S3	$(0-9) \times 1$
Switch S4	according to the table

Switch S4 switch position	Input frequency $\mathrm{f}_{\mathrm{E}}(\mathbf{S} 1+\mathbf{S} 2+\mathrm{S} 3)$	0-Point of the output characteristic
0	x $10-0 \mathrm{~Hz}$	0 mA
1	x $10-1 \mathrm{~Hz}$	0 mA
2	x $10-2 \mathrm{~Hz}$	0 mA
3	x $10-3 \mathrm{~Hz}$	0 mA
4	x $10-0 \mathrm{~Hz}$	4 mA
5	x $10-1 \mathrm{~Hz}$	4 mA
6	x $10-2 \mathrm{~Hz}$	4 mA
7	x $10-3 \mathrm{~Hz}$	4 mA

Adjustment of the time response
By means of the thumbwheel switch S5 the time can be set, after which the output current rises in case of an erratic rise of the input frequency.
The value of the time constant t is calculated from the following formula:
$\tau=$
2^{N+1}
f_{s}

The value N can be set at the thumbwheel switch S 5 from $0 \ldots 9$.

Step response

$$
\begin{aligned}
& J(t)=J_{1}+\left(J_{2}-J_{1}\right) \times\left(1-e-\frac{t}{\tau}\right) \\
& J(t)=J_{1}+\Delta J \times\left(1-e-\frac{t}{\tau}\right)
\end{aligned}
$$

$J(t)$: Output current
J_{1} : Output current at frequency f_{1}
J_{2} : Output current at frequency f_{2}
$\Delta \mathrm{J}$: Output current difference $\mathrm{J}_{2}-\mathrm{J}_{1}$
τ : time constant

